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Driven granular gases with gravity
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We study fluidized granular gases in a stationary state determined by the balance between external driving
and bulk dissipation. The two considered situations are inspired by recent experiments, where gravity plays a
major role as a driving mechanism: in the first case, gravity acts only in one direction and the bottom wall is
vibrated; in the second case, gravity acts in both directions and no vibrating walls are present. Simulations
performed under the molecular chaos assumption show averaged profiles of density, velocity, and granular
temperature that are in good agreement with the experiments. Moreover, we measure velocity distributions that
show strong non-Gaussian behavior, as experiments pointed out, but also density correlations accounting for
clustering, at odds with the experimental results. The hydrodynamics of the first model is discussed and an
exact solution is found for the density and granular temperature as functions of the distance from the vibrating
wall. The limitations of such a solution, in particular in a broad layer near the wall injecting energy, are
discussed.
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I. INTRODUCTION

In general, granular materials@1#, due to the presence o
dissipative forces, are not equilibrium systems neither fro
configurational point of view or from a dynamical point o
view. A statistically stationary state can be produced b
competition between the dissipation due to the inelastic
lisions among the particles and the energy injection due to
external source, which prevents the system from cooling
coming to rest.

Usually, granular gases are considered in the homo
neous cooling regime; less frequently, they are studied
stationary regime where energy flows into the system fr
some external source~stochastic driving, vibrating plates
shear, etc.! and dissipates by means of inelastic collisions
sufficient condition to prevent strong density instabiliti
~such as those found by Duet al. @2#! seems to be the pres
ence of an even minimal, but spread out, temperature so
@4#.

Much evidence, by mean of computer simulations, h
been found to suggest that different kinds of density ins
bilities, such asclustering@5# ~density gradients growing on
time scales faster than typical hydrodynamics scales! or in-
elastic collapse@6# ~the local divergence of the collision rat
so that an infinite number of collisions occurs in a fin
time!, may emerge in a cooling granular assembly, that i
granular gas losing its starting kinetic energy because of
sipative collisions. It has also been shown that the velo
distribution of particles in the free cooling state with hom
geneous density has overpopulated high-energy tails;exp
(2Av) @7,8#.

When granular gases are driven in some way to bala
the loss of energy due to collisions, a stationary state ma
observed. The first model of randomly driven granular g
was proposed in@2#. It showed pathologies in the density an
granular temperature profiles but also a breakdown of
1063-651X/2001/64~1!/011301~13!/$20.00 64 0113
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thermodynamic limit. Another randomly driven model wa
then proposed to offer a different insight into the kinetics
granular gases@4#. In this model, the driving mechanism is
stochastic energy source acting on every particle as a
bath with a fixed temperatureTF and a fixed viscous damp
ing with characteristic timet. In the stationary ‘‘collisional’’
regime ~characterized by a collision time much lower tha
t), the gas showed a fractal distribution of density and
distribution of velocities with overpopulated~non-Gaussian!
high-energy tails. The homogeneous solution of the co
sponding Boltzmann-Enskog equation has been analytic
studied@8# showing that;exp(2Av3/2) high-energy tails are
expected.

The aim of this work is to study a class of models f
driven granular gases where the efficiency of the energy
jection is guaranteed by the presence of gravity, taking
spiration from some recent experiments@9,10#: in these ex-
periments, a bottom confining wall is the source of granu
temperature while gravity forces the particles to return
contact with this source. We are interested in very dilu
systems, where the granular material behaves as an inel
gas, rather than dense granular flows, where many static
fects, such as clogging, arching, or bubbling, appear. S
systems have been studied in relation to compaction dyn
ics or slow dense chute flows@3#. The study is based on
direct simulation Monte Carlo, but we also discuss~for one
of the models! the hydrodynamic theory. The first version o
the model~gravity in only one direction and a vibrating bo
tom wall! has been previously studied in the on
dimensional case, which is a vibrated column of grains un
the force of gravity@11#, and the transition or the coexistenc
of different phases~gas, partially fluidized, and condense!
was investigated. In two dimensions, experiments@12#,
simulations@13#, and theories@14# have analyzed a vertica
system of grains with gravity and a vibrating bottom wa
~with different kinds of vibration! searching for a simple
©2001 The American Physical Society01-1
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BALDASSARRI, MARCONI, PUGLISI, AND VULPIANI PHYSICAL REVIEW E64 011301
scaling relation between such global variables as the glo
granular temperatureTG or the center-of-mass heighthc.m. as
a function of the size of the systemN, the typical velocity of
the vibrating wallV, or the restitution coefficientr. In all
these calculations, the authors did not pay too much atten
to the hydrodynamic profiles of the system, always assum
a constant granular temperature~‘‘isotherm atmosphere’’!
and a density profile exponentially decaying with the heig
as in the case of a Boltzmann elastic gas under gravity.
of the results of this work, discussed in Sec. V, is that also
the dilute regime, which one can study by means of Mo
Carlo methods, the use of these assumptions is not obv
in particular when trying to solve the global balance betwe
external energy injection and bulk dissipation due to inela
collisions among particles. It must also be noted that
general validity of a hydrodynamic description is still th
subject of debate in the case of granular gases far from
elastic limit ~a review of hydrodynamic problems is found
@15#!.

In Sec. II, we present the two versions of the model.
Sec. III and IV, we illustrate the results. In Sec. V, we d
cuss the hydrodynamics of the model in its first version, a
finally we draw conclusions. For the sake of completen
and in order to make the paper self-contained, we include
Appendix A a brief description of the direct simulatio
Monte Carlo of the Boltzmann equation, and in Appendix
we include the expressions of the dimensionless coeffici
appearing in the hydrodynamic equations of Sec. V.

II. THE MODELS

We introduce two bidimensional models both consist
of N identical smooth disks of diameters and massm51
subject to binary instantaneous inelastic collisions that c
serve the total momentum

v181v285v11v2 ~1!

and reduce the normal component of the relative velocity

~v182v28!•n̂52r @~v12v2!•n̂#, ~2!

where r is the normal restitution coefficient (r 51 in the
completely elastic case! andn̂5(x12x2)/s is the unit vector
along the line of centersx1 andx2 of the colliding disks at
contact. With these rules satisfied, the postcollisional velo
ties are

v185v12
11r

2
@~v12v2!•n̂#n̂,

v285v21
11r

2
@~v12v2!•n̂#n̂. ~3!

In addition, the particles experience the external gravitatio
field and the presence of confining walls. With respect
previous works@4#, the energy necessary to prevent the co
ing of the system due to the inelastic collisions is not p
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vided by a heat bath: in the present paper the energy fee
mechanism is of two types according to the two numeri
experiments we perform.

~i! In model A, illustrated in Fig. 1 and inspired by
recent laboratory experiment@9# and a numerical experimen
@16#, the ‘‘apparatus’’ consists of a plane of dimensionLx
3Ly inclined by an angleu with respect to the horizontal
The particles are constrained to move in such a plane un
the action of an effective gravitational forcege5g sinu
pointing downward. In the horizontal direction, there are p
riodic boundary conditions. Vertically the particles are co
fined by walls, both inelastic with a restitution coefficientr w
~the difference between restitution coefficients for partic
particle interactions and particle-wall interactions will be d
cussed below!. Besides, the bottom wall vibrates and ther
fore injects energy and momentum into the system. T
vibration can have either a periodic character~as in@9#! or a
stochastic behavior with thermal properties~as in @16#!. In
the periodic case, the wall oscillates vertically with the la
Yw5Aw sin(vwt) and the particles collide with it as with
body of infinite mass, so that the vertical component of th
velocity after the collision isvy852r wvy1(11r w)Vw ,
where Vw5Awvw cos(vwt) is the velocity of the vibrating
wall. In the stochastic case, we assume that the vibra
amplitude is negligible and that the particles colliding wi
the wall have, after the collision, new random velocity co
ponentsvxP(2`,1`) andvyP(0,1`) with the following
probability distributions:

P~vy!5
vy

Tw
expS 2

vy
2

2Tw
D , ~4!

P~vx!5
1

A2pTw

expS 2
vx

2

2Tw
D . ~5!

~ii ! In model B, sketched in Fig. 2 the ‘‘setup’’ is a two
dimensional channel of depthLy and of lengthLx , vertically
confined by a bottom and a top inelastic wall, with period

FIG. 1. A sketch of the first model where the granular assem
is driven by gravity plus a~periodically or stochastic! vibrating
wall.
1-2
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DRIVEN GRANULAR GASES WITH GRAVITY PHYSICAL REVIEW E64 011301
boundary conditions in the direction parallel to the flow. T
channel is tilted up by an anglef with respect to the hori-
zontal so that gravity has both componentsgx5g sinf and
gy5g cosf. This model mimics the experiment performe
by Azanzaet al. @10#, where a stationary flow in a two
dimensional inclined channel was observed at a point
from the source of the granular material. The assumption
periodic boundary conditions in the direction of the flow
consistent with the observed stationarity, due to the bala
between the gravity drift and the damping effect of inelas
collisions ~for a discussion of the possible regimes that c
be shown by one particle in the presence of this balance,
@18#!.

The chosen collision rule excludes the presence of tang
tial forces, and hence the rotational degrees of freedom
not contribute to the description of the dynamics.

Under the assumption ofmolecular chaos, stating that
P2(x,x1sn̂,v1 ,v2 ,t)5P(x,v1 ,t)P(x1sn̂,v2 ,t), whereP2
andP are the probability density functions for two particle
and one particle, respectively, it is possible to write down
Boltzmann equation@Eq. ~9! in Sec. V#, which can be solved
by means of Monte Carlo methods. Here we used a sim
fied ~but still efficient! version of the direct simulation Mont
Carlo scheme proposed by Bird@17#. With respect to the
original version of the algorithm, the clock that determin
the collision rate is replaced by ana priori fixed collision
rate via a constant collision probabilitypc given to every
disk at every time stepDt of the simulation, in such a way
that the single-particle collision rate isx;pc /Dt. The col-
liding particle then seeks its collision partner among
other particles in a neighborhood of radiusr B , choosing it
randomly with a probability proportional to their relative v
locities. Moreover, in this approximation the diameters is
no longer explicitly relevant but it is directly related to th
choices ofpc and r B in a nontrivial way: in fact, the Bird
algorithm allows the particles to pass through each other
that a precise diameter cannot be defined and estimated
function ofpc andr B . The Bird scheme is described in mo
detail in Appendix A.

The agreement between our simulations and the inspi
experiments justifies the simplifying assumptions conside
for our model, i.e., assuming molecular chaos and neglec

FIG. 2. A sketch of the second model where the only ene
source is gravity, with components in both directions.
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tangential forces. Nevertheless, as a partial check, we t
modified version of model B where the tangential forces m
affect the postcollisional velocities of the particles. As r
ported below, the introduction of such forces does n
change the behavior of the measured quantities.

III. DISCUSSION OF THE RESULTS: MODEL A

Simulations of the first model, an inclined plane with
bottom wall injecting energy, have been performed for d
ferent choices of the number of disksN, the normal restitu-
tion coefficientr, the dimensionless width of the planeNw
5Lx /r B , and the parameter measuring the rate of ene
injection from the wall, that is, the temperatureTw in the
stochastic case and the amplitude and frequencyAw , vw in
the periodic case.

Let us show how numerical simulations with the molec
lar chaos assumption reproduce the main results obtaine
experiments@9,10# and in high-performance computer sim
lations @16# of inelastic hard disks.

Snapshots of the systems and time-averaged density
files are shown in Fig. 3 for the case of a randomly vibra
wall. We are in the presence of a highly fluidized phase
the type Isobe and Nakanishi@16# call granular turbulent:
looking at the time evolution of the density distribution
the system and of the coarse-grained velocity field, one
serves an intermittency-like behavior with rapid and stro
fluctuations of the density in the form of sudden explosio
followed by large clusters of particles traveling downwar
coherently, under the action of gravity. Of course, mo
dense and ordered phases~that one can expect at lower va
ues of energy injection! are not reproducible with the direc
simulation Monte Carlo, as strong excluded volume effe
appear and the assumption of negligible short-range corr
tions fails.

In Figs. 4 and 5, we display the horizontal velocity dist
butions for the stochastic case. In Fig. 4, distributions
different Tw are shown: the data collapse is obtained by r
caling the velocities byATw. Instead, in Fig. 5 we show the

y
FIG. 3. Snapshots of the model A with stochastic wall at te

peratureTw550 andTw5250. The leftmost inset displays the time
averaged number density profile for both cases. Values of o
parameters areN5500, Nw'56, r 50.7, r w50.7, andge521.
1-3
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BALDASSARRI, MARCONI, PUGLISI, AND VULPIANI PHYSICAL REVIEW E64 011301
velocity distributions of particles contained in stripes at d
ferent heights from the wall, again rescaled byAT(y) ~their
own variance! in order to obtain the data collapse. It appea
that the distributions are non-Gaussian and their broade
@that is the granular temperatureT(y)# is density-dependent
This dependence is shown in Fig. 6 as well as its depende
upon the height. An analogous dependence has been sh
in Ref. @4#, where the granular gas was driven by a homo
neous heat bath, showing a power lawT;n2b with b
;0.8, while in this case it seemsb;0.88.

The case of a periodically vibrated wall is illustrated
Figs. 7 and 8. One can see the density profiles~together with
a snapshot of the system! and the distribution of horizonta
velocities in two different regimes: forge521, a non-

FIG. 5. Distribution of horizontal velocities, for the model
with stochastic wall, measured on stripes at different heights
rescaled by the average temperature at that height. The inset s
the normalized number density profile with the position of the c
sen stripes.N55000, Nw'180, r 50.7, r w50.7, ge521, and
Tw5100.

FIG. 4. Distribution of rescaled horizontal velocitiesv/ATw for
the model A with stochastic wall at different temperaturesTw

550, Tw5100, andTw5250. The other parameters areN55000,
Nw'180, r 50.7, r w50.7, andge521.
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Gaussian distribution is obtained, while a distribution clo
to a Gaussian appears whenge52100. This trend towards a
Gaussian, as the angle of inclination is raised up, reprodu
exactly the experimental observation of Kudrolli and Hen
@9# ~where the angle of inclination of the plane was raised
from u50.1° to u510°) and can be explained as an effe
of the increase of the collision rate with the wall, whic
‘‘randomizes’’ the velocities in a more efficient way: th
resembles the heath bath model@4#, where one passes from
the non-Gaussian regime to the Gaussian one increasing
ratio between the heating rate and the collision rate.

d
ws
-

FIG. 7. Snapshot of the model A with periodically vibratin
wall ~right! and time-averaged density profile~left! for the follow-
ing choice of parameters:N5500, Nw'56, r 50.5, r w50.7, ge

521, f w5400p, andAw50.1.

FIG. 6. Granular~dimensionless! temperatureT/(ger B) versus
dimensionless heighty/r B ~above! and versus number densityn
~bottom! for the model A with stochastic wall, withN55000, Nw

'180, r 50.7, r w50.7, andge521. The solid line is a power-law
fit for T(n).
1-4
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DRIVEN GRANULAR GASES WITH GRAVITY PHYSICAL REVIEW E64 011301
In order to characterize the spatial clustering, we ha
studied the cumulated particle-particle correlation functio

CB(y,Dy)~ t,R!5
1

NB(y,Dy)~NB(y,Dy)21!

3 (
iÞ j :xi ,xj PB(y,Dy)

Q„R2uxi~ t !2xj~ t !u…,

~6!

whereB(y,Dy) is a horizontal stripe contained betweeny
1Dy/2 andy2Dy/2. After having checked that the syste
has reached a stationary regime, we have computed the
average of the correlation function, that is,

CB(y,Dy)~R!5
1

T2t0
E

t0

T

dt CB(y,Dy)~ t,R!, ~7!

which is independent of time ifT@t0. In Fig. 9, we show the
C(R) vs R for different stripesB(y,Dy). We observe a
power-law behavior

CB(y,Dy)~R!;Rd2(y). ~8!

In the case of homogeneous density,d2 is expected to be
the topological dimension of the stripe, that is,d251 if R
@Dy andd252 if R!Dy.

Clustering, whose signature is a value of the correlat
dimensiond2 lower than the topological dimension, appea
in the stripes with not too high densities, where an expon
smaller than 1 is measured~the fit is performed in the region
R@Dy). The evidence of clustering is at odds with the o
servation of Kudrolli and Henry@9#: They report, in fact, the
absence of clustering by measuring the distribution of
number of particles in boxes of fixed dimensions spread
over the inclined plane. This observation is perhaps due
the fact that in the statistical analysis employed in Ref.@9#,
the number of particles in each box is considered disreg

FIG. 8. Distributions of horizontal velocities for the model
with periodically vibrating wall for two different values of inclina
tion, that is,ge521 andge52100, while the other parameters a
fixed: N5500, Nw'56, r 50.5, r w50.7, f w5400p, andAw50.1.
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ing their heights, that is, they may belong to regions of d
ferent densities. In such a way, the slow decaying tails,
pected for the clusterized distributions of the stripes at low
densities, are partially hidden by the Poissonian~homoge-
neous! distribution of the stripes at higher density. Moreove
even from the global density distribution measured in th
work, a tail decaying slower than a Poissonian cannot
clearly ruled out.

IV. DISCUSSION OF THE RESULTS: MODEL B

Let us now show the results for the second model,
inclined bidimensional channel.

In Figs. 10 and 11, the hydrodynamic fieldsn(y) ~number

FIG. 9. Cumulated correlation functionC(R), as defined in the
text, measured along stripes at different heights for the mode
with periodically vibrating wall. In the inset is displayed the num
ber density profile, with the position of the chosen stripes. HereN
5500, Nw'56, r 50.5, r w50.7, f w5400p, Aw50.1, andge5
21.

FIG. 10. Normalized number densityn, dimensionless horizon-
tal velocity vx /Agxr B, and dimensionless granular temperatu
T/Agxr B versus dimensionless heighty/r B for the two-dimensional
inclined channel~model B!: N5500, Nw'56, gx51, gy522
~i.e., the inclination anglef5p/6), r 50.95, andr w50.95.
1-5
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BALDASSARRI, MARCONI, PUGLISI, AND VULPIANI PHYSICAL REVIEW E64 011301
density!, vx(y) ~velocity component parallel to the flow!,
and T(y) ~granular temperature! are shown as functions o
the distance from the bottom wally. The velocity, the tem-
perature, and the height are made dimensionless by resc
them by Agxr B, gxr B , and r B , respectively. The profiles
reproduce well those measured experimentally by Aza
et al. @10#: they show a critical heightH of about six times
the radiusr B , which corresponds to the separation betwe
two different regimes of the cooling rate. In a mean-fie
framework, the local rate of dissipation due to the inelas
collisions ~as already stated before! is z}nT3/2.

This can be understood by simply noting that the collis
rate is proportional to the local density and to the local re
tive velocity of the particles (AT), while the change in the
granular temperature induced by every collision is prop
tional to the temperatureT. The quantityz̃5nT3/2 as a func-
tion of y is shown in Fig. 12. The cooling rate decreas
exponentially and is reduced under 1/100 of its maxim
value at about the observed critical heightH'6r B , account-
ing for the difference between a collisional regime and
ballistic one.

With respect to the velocity and temperature profiles
Fig. 10, we note here that quite unphysical features app
In particular, the quite strong slipping effect near the bott
wall is in contrast with the experimental findings. We thin
that this is due to incorrect modeling of the particle-w
collision events.

The restitution coefficient used in our model has to
considered as an effective parameter describing the ene
ics of collisions. It should depend on the details of the co
sion event, in principle even on the relative velocities of t
colliding particles. In the experiment, the bottom wall w
covered with particles identical to the flowing ones with
spacing bounded between 0 and 0.8 mm. However, the
ticles are stuck to the bottom wall so that the collision ev
is completely different from a two-particle collision.

Using a lower effective restitution coefficient for the wa

FIG. 11. Normalized number densityn, dimensionless horizon
tal velocity vx /Agxr B, and dimensionless granular temperatu
T/Agxr B versus dimensionless heighty/r B for the two-dimensional
inclined channel~model b!: N5500, Nw'56, gx51, gy522 ~i.e.,
the inclination anglef5p/6), r 50.95, andr w50.4.
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r w ~see Fig. 10!, we obtain a better agreement with the e
perimental profiles. In particular, both temperature and
locity profiles seems to go to zero near the bottom, althou
we cannot really rule out slipping effects@vx(y50)Þ0#.

We have also studied the distribution of horizontal velo
ties in stripes at different heights~here the mean values ar
height-dependent!. These are displayed in Fig. 13, showin
the emergence of a non-Gaussian behavior mainly in the
with r w,r and only in the stripes near the bottom wall. Th
authors of the experiment of Ref.@10# claim that the distri-
butions of velocity are very close to the Gaussian and try
fit their data with the rheological model proposed by Jenk
and Richman@19#, which postulate a quasi-Gaussian equili
rium to calculate the transport coefficients. Near the bott

FIG. 12. Cooling rate, as defined in the text, versus dimens
less heighty/r B for the two-dimensional inclined channel~model
B!: N5500, Nw'56, gx51, gy522 ~i.e., the inclination angle
f5p/6), r 50.95, r w50.95, orr w50.4.

FIG. 13. Distribution of horizontal velocities for the model B
measured on stripes at different heights and rescaled in orde
have the same mean and variance. The inset shows the norma
number density profile with the position of the chosen stripesN
5500, Nw'56, r 50.95, r w50.95, gx51, andgy522 ~i.e., the
inclination anglef5p/6).
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DRIVEN GRANULAR GASES WITH GRAVITY PHYSICAL REVIEW E64 011301
wall, the Gaussian approximation is far from obvious,
shown by the results of our simulations: this is an effect
the inelasticity of the collisions but also of the proximity
the boundary.

Finally, we have investigated the homogeneity of the d
sity: the Fig. 14 shows the previously defined functi
CB(y,Dy)(R) for stripes at different density. There appea
again a clustering effect, with a correlation dimension ra
ing from 1 ~homogeneous stripes! to 0.2 ~highly clusterized
stripes!. In the figure, we show the very small distance
gion,R,r B , where homogeneity should be recovered. Sin
in our simulationDy'r B , we expectd(y)52 in this region.

We consider the comparison between our simplifi
model and the experimental profiles quite satisfactory:
seems to suggest that introducing further physical det
should be irrelevant at this description level. However,
briefly report the results obtained with a slightly modifie
version of the model, including the effects of tangent
forces. Such forces play a key role in dense granular flo
@3,20#, being responsible for arching. On the other hand,
present results suggest that in the case of diluted sys
they act similarly to the normal forces without introducin
noticeable effects.

The introduction of tangential forces in the model stud
accounts for a new collision rule:

~v182v28!•n̂52r n@~v12v2!•n̂#,

~v182v28!• t̂52r t@~v12v2!• t̂#,

where we replace the single restitution coefficient with a p
of parametersr n and r t, respectively, due to the effect o
normal and tangential collision forces (t̂ is a unit vector per-
pendicular ton̂). Analogously, the restitution coefficientr w

splits into two new parametersr w
n and r w

t . The results of

FIG. 14. Cumulated correlation functionC(R), as defined in the
text, measured along stripes at different heights for the model B
the inset is displayed the normalized number density profile w
the position of the chosen stripes. HereN5500, Nw'56, r
50.95, r w50.95, gx51, andgy522 ~i.e., the inclination angle
f5p/6). The dashed lines represent the power-law fits, the ver
dot-dashed line represents the width of the stripesDy.
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simulations with several choices of the enlarged set of
rameters do not show qualitative differences: setting tang
tial restitution coefficients lower than 1 is equivalent to e
hancing the dissipation in the original model.

As an example of this, we show Fig. 15, where the e
tremal case of a vanishing tangential restitution coefficien
reported. Note that the profiles are similar to those shown
Fig. 11, where a lowr w50.4 was used.

V. DISCUSSION OF THE HYDRODYNAMICS: RESULTS
AND PROBLEMS

The Boltzmann equation for the two models introduced
this paper~in two dimensions! reads

S ]

]t
1v•“1gi

]

]v i
D f ~x,v,t !5J~ f , f !, ~9!

J~ f , f !5sE dv1E dn̂ Q~ n̂•vr !~ n̂•vr !

3@r 22f ~x,v8,t ! f ~x,v18 ,t !2 f ~x,v,t ! f ~x,v1 ,t !#.

~10!

Heren̂ is the unit vector along the line joining the cente
of the colliding particles at contact,vr5v2v1 is the relative
velocity of the colliding disks,Q is the Heaviside step func
tion, andv8 and v18 are the precollisional velocities leadin
after collision to velocitiesv, v1.

Equation~9! must be completed with the boundary co
ditions in order to describe the microscopic evolution of t
whole system.

The difficulty of solving the Boltzmann equation~9! can
be bypassed by substituting the microscopic descrip
given by f (x,v,t) with the averaged macroscopic descripti
given by the following hydrodynamic fields: the numb

In
h

al

FIG. 15. Normalized number densityn, dimensionless horizon-
tal velocity vx /Agxr B, and dimensionless granular temperatu
T/(gxr B) versus dimensionless heighty/r B for the two-dimensional
inclined channel. Here tangential restitution coefficients sma
than 1 are considered~see text!: N5500, Nw'56, gx51, gy5

22 ~i.e., the inclination anglef5p/6), r n50.95, r t50, r w
n

50.95, andr w
t 50.
1-7
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density fieldn(x,t), the velocity fieldv(x,t), and the granu-
lar temperature fieldT(x,t). These quantities are given by

n~x,t !5E dv f ~x,v,t !, ~11!

u~x,t !5
1

n~x,t !E dv vf ~x,v,t !, ~12!

kBT~x,t !5
1

n~x,t !E dv
m@v2u~x,t !#2

2
f ~x,v,t !. ~13!

Multiplying the Boltzmann equation~9! by 1 or v or
m@v2u(x,t…#2/2 and integrating overv1, one can derive
@24,25# the equations of fluid dynamics:

Dn

Dt
1n] iui50, ~14!

mn
Dui

Dt
52] jt i j 1ngim ~ i 51,2,3!, ~15!

n
DkBT

Dt
52] iqi2t i j ] jui2znkBT, ~16!

where] i5]/]xi ~for the sake of compactness, we use h
the notationx→x1 andy→x2) andD/Dt5]/]t1u•“ is the
Lagrangian derivative, e.g. (D/Dt)F(x,t)
5(d/dt)F„f(x0 ,t),t… with f(x0 ,t) the evolution after a
time t of x0 under the velocity fieldu. In the above equa
tions,

t ik5E dv m~v i2ui !~vk2uk! f ~x,v,t ! ~17!

is the stress tensor,g is the volume external force~gravity in
our case!,

qi5E dv
m

2
v i uv2uu2f ~x,v,t ! ~18!

is the heat flux vector, and

z~x,t !5
m~12r 2!p1/2s

8G~5/2!nkBT E dv1E dv2uv12v2u3

3 f ~x,v1 ,t ! f ~x,v2 ,t ! ~19!

is the cooling rate due to dissipative collisions.
The set of equations~14!–~16! becomes closed hydrody

namic equations for the fieldsn, u, andT whenPi j , q, andz
are expressed as functionals of these fields. This is obtai
for example, expressing the space and time dependencef
in terms of the hydrodynamic fields and then expandingf to
first order~the so-called Navier-Stokes order! in their gradi-
ents, with the exception ofz, which requires an expression o
f to the second order of gradients to be consistent with
01130
e
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f
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other terms. With this approximation, Eqs.~14!–~16! include
the contributions up to the second order in the gradients
the fields.

Calculations of the closure of the hydrodynamic equatio
for granular media have been performed with some appr
mations restricting the validity of the results to the low d
sipation or quasielastic limit@19#. More recently@21#, the
analysis has been extended to arbitrary inelasticity giv
closed expressions for the momentum and heat fluxes an
the cooling ratez.

We follow these more recent results@21# and write down
the hydrodynamics for the model A presented in this pa
@gravity in one direction and vibrating bottom wall, i.e.,g
5(0,ge) and ge,0# with the following assumptions: the
fields do not depend uponx ~the coordinate parallel to the
bottom wall!, i.e., ]/]x50, and the system is in a stead
state, i.e.,]/]t50. The continuity equation~14! then reads
]/]y„n(y)uy(y)…50 and this can be compatible with th
bottom and top walls~where nvy50) only if n(y)vy(y)
50, that is, in the absence of macroscopic vertical flow. T
equations are written for the dimensionless fieldsT̃5kBT/
(2gems) and ñ5ns2, while the positiony is made dimen-
sionless usingỹ5y/s. Finally, for the pressure we se
p(y)5t225n(y)kBT(y). With the assumption discusse
above, the equations of Breyet al. @21# read

d

dỹ
@ ñ~ ỹ!T̃~ ỹ!#52ñ~ ỹ!, ~20!

1

ñ~ ỹ!

d

dỹ
Qr~ ỹ!1C~r !ñ~ ỹ!T̃~ ỹ!3/250, ~21!

whereQr( ỹ) is the granular heat flux expressed by

Qr~ ỹ!5A~r !T̃~ ỹ!1/2
d

dỹ
T̃~ ỹ!1B~r !

T̃~ ỹ!3/2

ñ~ ỹ!

d

dỹ
ñ~ ỹ!.

~22!

In the above equations,A(r ), B(r ), andC(r ) are dimen-
sionless monotone coefficients, all with the same sign,
plicitly given in Appendix B. In particular,B(1)50 and
C(1)50, i.e., in the elastic limit there is no dissipation an
the heat transport is due only to the temperature gradie
while when r ,1, a term dependent upon (d/dỹ)ln„ñ( ỹ)…
appears inQr( ỹ). The use of dimensionless fields eliminat
the explicitg dependence from the equations, which rema
hidden in their structure@the right-hand term of Eq.~20!,
which is due to the gravitational pressure gradient, dis
pears in the equation forg50#.

A change of coordinate can be applied to Eqs.~20! and
~21! in order to obtain a simpler form:

ỹ→ l ~ ỹ!5E
0

ỹ
ñ~y8!dy8. ~23!
1-8
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It follows that wheny spans the range@0,Ly#, the coordi-
natel spans the range@0,s/Lx#. With this change of coordi-
nate it happens that

d

dỹ
→ñ~ l !

d

dl
~24!

and the first Eq.~20! reads

d

dl
@ ñ~ l !T̃~ l !#521, ~25!

from which we immediately to see that

H5ñ~ l !T̃~ l !1 l ~26!

is a constant, i.e. (d/dl)H50. This is equivalent to observe
ing that

P~y!2gE
0

y

n~y8!dy8 ~27!

is constant, which is merely the Bernoulli theorem for a flu
in the gravitational field with the density depending upon
height.

Relation ~26! is verified by the model simulated in thi
work in the Fig. 16 for almost all the height of the contain
apart from the boundary layer near the bottom driving w

Using the coordinatel introduced in Eq.~23! and the
elimination of ñ( l ) using the recognized constant, that is,

ñ~ l !5
H2 l

T̃~ l !
, ~28!

the second Eq.~21!, after some simplifications, and after
second change of coordinatel→s( l )5H2 l , becomes

FIG. 16. Plot ofH, defined in Sec. V, versusl, for three different
simulations of the model A: two cases are with the stochastic w
(N55000, Nw'180, r 50.7, r w50.7, ge521, Tw5150, andTw

5250), while the third case is with the periodic wall (N55000,
Nw'180, r 50.7, r w50.7, ge521, f w580p, andAw50.1).
01130
e

,
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a~r !s

T̃~s!1/2

d2

ds2
T̃~s!2

a~r !s

2T̃~s!3/2S d

ds
T̃~s! D 2

2
b~r !

T̃~s!1/2

d

ds
T̃~s!

1sT̃~s!1/250, ~29!

where a(r )5@A(r )2B(r )#/C(r ) and b(r )5@A(r )
2 1

2 B(r )#/@C(r )# are numerically checked to be positiv
~see Appendix B! for values of r not too low ~about r
.0.3) and are divergent in the limitr→1.

Equation~29! become a linear equation inT̃(s) as soon as
the change of variablez(s)5T̃(s)1/2 is performed:

2a~r !s
d2

ds2
z~s!22b~r !

d

ds
z~s!1sz~s!50, ~30!

giving the solution

z~s!5Asa8Ja8(r )„b8~r !s…1Bsa8(r )Na8(r )„b8~r !s…,
~31!

whereJa8 andNa8 are the Bessel functions of the first an
second kind, respectively,a8(r )5@a(r )1b(r )#/@2a(r )# is
real and positive, andb8(r )5$1/@2a(r )#%1/2 is real and is
considered in its positive determination. Moreover, th
present the elastic valuesa8(1)51 andb8(r→1)50 ~see
appendix B!, while A and B are constants that must be d
termined by assigning the boundary conditions.

Then we can derive the expressions forT̃( l ) and ñ( l ):

T̃~ l !5~H2 l !2a8(r )@AJa8(r )„b8~r !~H2 l !…

1BNa8(r )„b8~r !~H2 l !…#2, ~32!

ñ~ l !5
~H2 l !122a8(r )

@AJa8(r )„b8~r !~H2 l !…1BNa8(r )„b8~r !~H2 l !…#2
.

~33!

To calculate the expressions ofT̃ and ñ as a function of
the original coordinateỹ, one needs to solve the equation

d

dl
ỹ~ l !5

1

ñ~ l !
~34!

putting in it the solution~33!. However, one can obtain
comparison with the numerical simulations using the n
coordinatel. The main problem, at this point, is a discussi
of the boundary conditions needed to eliminate the const
H, A, andB.

One could impose thatn( l max)50 at l max5s/Lx . From this
condition it immediately follows thatH5s/Lx . A second
condition can be obtained imposing a vanishing derivative
the temperature atl max, that is,

S d

dl
T̃~ l ! D

l 5s/Lx

50. ~35!

ll
1-9
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BALDASSARRI, MARCONI, PUGLISI, AND VULPIANI PHYSICAL REVIEW E64 011301
The third condition is the most delicate: it must conta
the rate of energy injection coming from the vibrating wa
This rate depends upon the parameterTw ~or Aw and vw)
and upon the particles flux impinging on the wallF

5n1Lxv̄1, wheren1 is the number density of particle ap
proaching the wall andv1 , is their velocity averaged nea
the wall. The first may be simply estimated asn15n(0)/2.
Moreover, if the velocity of the macroscopic flow is zero, t
average velocity of the impinging particles is due only

fluctuations ofu, that is, v1'AkBT(0)/m. In a collision
with the wall, the average energy gain is given by

DEw5
m

2
~ uv8u22uvu2!5

m

2
@~vx8!21~vy8!22~vx!

22~vy!2#,

~36!

which is different for the stochastic or the periodic ca
respectively:

DEws5
3kBTw

2
2kBT~0!, ~37!

DEwp5
m~11r w!2Aw

2 vw
2

4
2

~12r w
2 !kBT~0!

2
~38!

obtained straightforwardly from Eq.~36! assuming no corre
lations between the velocity of the wall and that of the a
proaching particles.

Then a nonclosed expression for the rate of energy in
tion coming from the wall reads

Wws5DEwsF5 3
4 kBTwLxn~0!AkBT~0!

m

2
Lxn~0!@kBT~0!#3/2

2Am
, ~39!

Wwp5DEwpF5
m~11r w!2Aw

2 v2

8
Lxn~0!AkBT~0!

m

2
~12r w

2 !

4
Lxn~0!

@kBT~0!#3/2

Am
. ~40!

The above expressions are useful to establish the t
needed boundary conditions. In order to do that, they m
be compared with the energy dissipation rate due to inela
collisions. The local dissipation rate is given b
z(y)kBT(y)5C(r )sn(y)@kBT(y)#3/2/Am ~see Appendix
B!. The instantaneous balance between energy injection
dissipation in collisions then reads

W5
1

LxLy
E

0

Lx
dxE

0

Ly
dy zkBT~y!

5
~2sg!3/2mC~r !

Ly
E

0

s/Lx
dl T̃~ l !3/2, ~41!

whereW is Wws or Wwp .
01130
,

-

c-

rd
st
tic

nd

Apart from the difficulty of solving the boundary cond
tions to give an expression ofA and B as functions of the
parameters of the model, one must observe that the hydr
namic description given here is ill-posed from the beginn
for what concerns a broad boundary layer near the bot
wall. A simple look at the profiles of ūy( ȳ)
5uy( ȳ)/A2ger B and T̄( ȳ)5Ty /(2ger B) ~the overlined
quantitiesn̄, ū, T̄, and ȳ are analogs of the dimensionles
variablesñ, ũ, T̃, and ỹ with the assumptionm51, kB51,
ands5r B) in Fig. 17 can give the idea. We expect from th
continuity equation~14!, as discussed above,uy(y)50 for
everyy, while a broad region appears with a nonconstant a
nonmonotonic behavior. Moreover, even the profile ofT(y)
shows an extremal point, in this case a minimum. But fro
Eq. ~22!, taking into account the substitution~28!, it can be
seen that the imposition (d/dỹ)T̃50 gives the following re-
lation:

T̃~ l !1/2
d2

dl2
T̃~ l !5

C~r !

B~r !2A~r !
T̃~ l !3/2, ~42!

where the fractionC/(B2A)521/a is numerically checked
to be negative from a value ofr lower than 0.4~see appendix
B!. Relation~42! states that ifT̃.0, a minimum@that is, a
positive value of (d2/dl2)T̃# cannot be expected. Simila
profiles for T(y), with a minimum, have been obtained
other simulations@22#.

A tentative fit is presented in Fig. 18. Here we used th
boundary conditions obtained directly from the simulation
a value ofnT at a certain heighty1 to obtain directlyH, the
value ofT, and the value of its derivative at heightsy2 and
y3, respectively, with ally1 ,y2 ,y3 not far from the top wall.
In this tentative fit, the problems discussed above app
clearly: there is a broad region near the bottom wall~see also

FIG. 17. Profiles of dimensionless hydrodynamic fieldsn̄, v̄y ,

and T̄ versus the dimensionless heighty/r B , for the model A with
the stochastic wall at temperatureTw5250. N55000, Nw'180,
r 50.7, r w50.7, andge521. The dashed vertical line marks th
same height of Fig. 18.
1-10
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DRIVEN GRANULAR GASES WITH GRAVITY PHYSICAL REVIEW E64 011301
Fig. 17! where the theoretical solution of Eqs.~20! and~21!
is qualitatively different from the simulation data.

The qualitative inconsistencies between the observed
files and the hydrodynamics in a broad boundary layer n
the vibrating wall are probably due to the high-density g
dients present in this region. The high-density gradients r
resent a numerical but also a conceptual problem: it is
merical because the profiles shown in Fig. 17 are obtaine
means of a coarse graining in horizontal stripesB(y,Dy) and
so they can be compared to the theoretical profiles only if
density in these stripes is approximately homogeneous;
conceptual because this hydrodynamic description is ba
upon the Navier-Stokes approximation, which is an exp
sion of f (x,v,t)5 f „vun(x,t),u(x,t),T(x,t)… up to the first
order in the gradients of the fieldsn,u,T.

It must be stressed that this boundary-layer problem
fects the description of the whole system in a strong way
its global behavior~for example, the scaling laws for th
global temperature or the center-of-mass height, extensi
investigated in@11–14#! emerges from the balance betwe
the bulk dissipation and the injection rate, which cannot
determined, even qualitatively, by a hydrodynamic study
the level proposed in this paper.

VI. CONCLUSIONS

We have studied, by means of a direct simulation Mo
Carlo algorithm, a model of granular flow in two differen
bidimensional setups: the first version consists of an incli
plane with a periodic horizontal boundary condition, a t
inelastic wall, and a vibrating bottom inelastic wall whi
gravity acts in they direction perpendicular to the vibratin
wall and pointing toward it; in the second version, grav
acts in both thex andy directions and the bottom wall doe

FIG. 18. Profiles of dimensionless hydrodynamic fieldsñ andT̃
versus 12 l / l max ~the new coordinatel is defined in Sec. V and
l max5s/Lx'rB /Lx) for the model A with the stochastic wall at tem
peratureTw5250. N55000, Nw'180, r 50.7, r w50.7, andge5
21. The solid lines are the theoretical fit using the hydrodynam
model of Breyet al.The vertical dashed line marks the height~also

appearing in Fig. 17!, whereT̃ presents a minimum and, therefor
goes to 0.
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not vibrate, therefore resembling a stationary flow along
bidimensional channel. In both versions of the model,
have found good agreement with the analogous experim
@9,10#. In particular, the model with the vibrating wall show
strong non-Gaussian behavior of the velocities, which tu
to a Gaussian behavior if the angle of inclination is raised
~this should be an effect of the increase of the heating rate
the particles are more frequently in contact with the vibrat
wall!. The same model also presents evidence of differ
degrees of clusterization at different heights, and this is
contrast with the experimental observation@9#. The model
with gravity in both directions and without a vibrating wa
shows a stationary flow in the horizontal direction, whe
there are periodic boundary conditions: the profiles of
number densityn(y), thex component of the velocityvx(y),
and the granular temperatureT(y) as functions of the dis-
tance from the bottomy are in very good agreement with th
experimental profiles, showing a linear behavior in a bro
region near the bottom that corresponds to the region wh
the collisions dominate the dynamics. This version of t
model also shows strong evidence of density-dependent c
terization and a non-Gaussian behavior near the bottom w
The simplicity of the first setup has allowed us to solve e
actly the hydrodynamics equations forn(y) and T(y) fol-
lowing the formulation of Breyet al. @21#; however, it is not
possible to obtain a matching condition between the bulk
the granular assembly and the vibrating wall that is resp
sible for the injection of energy. It seems to be an intrin
problem of the high-density gradients observed near the
tom wall that the Navier-Stokes approximation fails to d
scribe. This suggests the need for a better description of
boundary layer, which should include higher-order dens
and temperature gradients and also, at the level of kine
the non-Gaussian velocity statistics and the effect of spa
correlations~clustering!.
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APPENDIX A: BIRD’S SCHEME FOR THE MONTE
CARLO SOLUTION OF THE BOLTZMANN EQUATION

Bird’s scheme, often called direct simulation Monte Ca
~DSMC!, was designed in the 1960s@17# and its derivation
was a priori independent of the Boltzmann equation. R
cently, its convergence to solutions of the Boltzmann eq
tion in a suitable limit has been proved@23#, reinterpreting it
as a measure-valued stochastic process.

Bird’s scheme can be formulated as a fixed time (Dt) step
‘‘molecular-dynamics-like’’ simulation. At each time step
the dynamics is separated into two distinct processes:
independent evolution of every particle and the collisions
near particles. The following algorithm~for the single time
step! is the one we implemented in this work, which is
modification of the original scheme.

~i! Free flow Each particle evolves independently follo

s

1-11
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ing the equations of motionẋ5v,v̇5g with first-order dis-
cretization.

~ii ! Collisions. Every particlei, during this time step, ha
a probabilitypc of making a collision, so thatpc /Dt}s ~in
fact, the collision cross section is proportional to the dia
eter of the particles!. If the particle collides, then anothe
particle xj ,vj is chosen withuxi2xj u<r B ~we call r B the
‘‘Bird radius,’’ but it could also be thought of as the ‘‘Bolt
zmann radius’’! with probability pi j }uvr u; for the pair i , j ,
the postcollisional velocities are calculated as they were a
contact with a random choice of the collision parametern̂;
this step is repeated for every particle.

It is important to stress the fact that this is above al
Monte Carlo method to solve the Boltzmann equation~9!. In
this sense, microscopic~short-range! details are lost; theN
particles themselves do not representN real grains of the
granular assembly but carry the space-time average infor
tion of many more particles.

APPENDIX B: THE NUMERICAL COEFFICIENTS IN THE
HYDRODYNAMIC EQUATIONS

In Sec. V, the hydrodynamics of the first model is studie
The equations with the transport coefficients calculated
Brey et al. @21# are used. The coefficients needed in our c
are the two thermal conductivitiesk andm appearing in the
expression of the heat flux,

q52k“~kBT!2m“n, ~B1!

and the coefficientz of the dissipative term,

2zkBT. ~B2!

In Ref. @21#, the coefficients are given for the cased53
(d is the dimension of the space!. We have taken the coef
ficients for d52 from an unpublished~to our knowledge!
work of Brey et al. @26#, and we have put them in the fo
lowing form:

2k5A~r !
~kBT!1/2

sm1/2
, ~B3!

2m5B~r !
~kBT!3/2

sm1/2n
, ~B4!

2z5C~r !
sn~kBT!1/2

m1/2
, ~B5!

where

A~r !52k1~r !k0 , ~B6!

B~r !52m1~r !k0 , ~B7!
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C~r !52z1~r !/h0 , ~B8!

and

k0

2

Ap
, ~B9!

h05
1

2Ap
, ~B10!

m152

z1~r !S k1~r !1
c1~r !

4z1~r ! D
n1~r !23z1~r !

, ~B11!

k15
11c1~r !

n1~r !24z1~r !
, ~B12!

z15 1
2 ~12r 2!@11 3

32 c1~r !#, ~B13!

n1~r !5~11r !@ 19
8 2 15

8 r 1 1
1024~1426r !c1~r !#,

~B14!

c1~r !532
~12r !~122r 2!

57225r 130r 2~12r !
. ~B15!

The coefficientsA(r ), B(r ), andC(r ) are plotted in Fig.
19. In the same figure are also presented the coeffici
a(r )5@A(r )2B(r )#/C(r ) and b(r )5@A(r )2 1

2 B(r )#/
C(r ) appearing in Eq.~30! and, finally, the coefficients
a8(r )5@a(r )1b(r )#/@2a(r )# and b8(r )5$1/@2a(r )#%1/2

appearing in the solution~31!.

FIG. 19. Transport coefficientsA, B, and dissipative coefficien
C of hydrodynamics~Sec. V!, numerical coefficientsa and b of
Eq. ~30!, and numerical coefficientsa8 andb8 of the solution~31!
versus the restitution coefficientr.
1-12
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