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We study fluidized granular gases in a stationary state determined by the balance between external driving
and bulk dissipation. The two considered situations are inspired by recent experiments, where gravity plays a
major role as a driving mechanism: in the first case, gravity acts only in one direction and the bottom wall is
vibrated; in the second case, gravity acts in both directions and no vibrating walls are present. Simulations
performed under the molecular chaos assumption show averaged profiles of density, velocity, and granular
temperature that are in good agreement with the experiments. Moreover, we measure velocity distributions that
show strong non-Gaussian behavior, as experiments pointed out, but also density correlations accounting for
clustering, at odds with the experimental results. The hydrodynamics of the first model is discussed and an
exact solution is found for the density and granular temperature as functions of the distance from the vibrating
wall. The limitations of such a solution, in particular in a broad layer near the wall injecting energy, are
discussed.

DOI: 10.1103/PhysRevE.64.011301 PACS nuni®er81.05.Rm, 05.20.Dd

[. INTRODUCTION thermodynamic limit. Another randomly driven model was
then proposed to offer a different insight into the kinetics of
In general, granular materiaJ&], due to the presence of granular gasegt]. In this model, the driving mechanism is a
dissipative forces, are not equilibrium systems neither from atochastic energy source acting on every particle as a heat
configurational point of view or from a dynamical point of bath with a fixed temperaturg- and a fixed viscous damp-
view. A statistically stationary state can be produced by ang with characteristic time-. In the stationary “collisional”
competition between the dissipation due to the inelastic colregime (characterized by a collision time much lower than
lisions among the particles and the energy injection due to am), the gas showed a fractal distribution of density and a
external source, which prevents the system from cooling andistribution of velocities with overpopulatddon-Gaussian
coming to rest. high-energy tails. The homogeneous solution of the corre-
Usually, granular gases are considered in the homogesponding Boltzmann-Enskog equation has been analytically
neous cooling regime; less frequently, they are studied in atudied[8] showing that~exp(—Av®?) high-energy tails are
stationary regime where energy flows into the system fronexpected.
some external sourcéstochastic driving, vibrating plates, The aim of this work is to study a class of models for
shear, etg.and dissipates by means of inelastic collisions. Adriven granular gases where the efficiency of the energy in-
sufficient condition to prevent strong density instabilitiesjection is guaranteed by the presence of gravity, taking in-
(such as those found by Det al.[2]) seems to be the pres- spiration from some recent experimeh®10]: in these ex-
ence of an even minimal, but spread out, temperature sourgeeriments, a bottom confining wall is the source of granular
[4]. temperature while gravity forces the particles to return in
Much evidence, by mean of computer simulations, hasontact with this source. We are interested in very diluted
been found to suggest that different kinds of density instasystems, where the granular material behaves as an inelastic
bilities, such a<lustering[5] (density gradients growing on gas, rather than dense granular flows, where many static ef-
time scales faster than typical hydrodynamics sgabesn-  fects, such as clogging, arching, or bubbling, appear. Such
elastic collapsé6] (the local divergence of the collision rate systems have been studied in relation to compaction dynam-
so that an infinite number of collisions occurs in a finiteics or slow dense chute flow8]. The study is based on
time), may emerge in a cooling granular assembly, that is, alirect simulation Monte Carlo, but we also discii&s one
granular gas losing its starting kinetic energy because of dissf the modelsthe hydrodynamic theory. The first version of
sipative collisions. It has also been shown that the velocitthe model(gravity in only one direction and a vibrating bot-
distribution of particles in the free cooling state with homo-tom wall) has been previously studied in the one-
geneous density has overpopulated high-energy tadsp  dimensional case, which is a vibrated column of grains under
(—Av) [7,8]. the force of gravityf 11], and the transition or the coexistence
When granular gases are driven in some way to balancef different phaseggas, partially fluidized, and condenged
the loss of energy due to collisions, a stationary state may baas investigated. In two dimensions, experimeni],
observed. The first model of randomly driven granular gasimulations[13], and theorie§14] have analyzed a vertical
was proposed ifi2]. It showed pathologies in the density and system of grains with gravity and a vibrating bottom wall
granular temperature profiles but also a breakdown of théwith different kinds of vibration searching for a simple
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scaling relation between such global variables as the global
granular temperatur€g or the center-of-mass height ,, as

a function of the size of the systel the typical velocity of

the vibrating wallV, or the restitution coefficient. In all
these calculations, the authors did not pay too much attention
to the hydrodynamic profiles of the system, always assuming
a constant granular temperatufésotherm atmosphere)’

and a density profile exponentially decaying with the height,
as in the case of a Boltzmann elastic gas under gravity. One
of the results of this work, discussed in Sec. V, is that also in
the dilute regime, which one can study by means of Monte
Carlo methods, the use of these assumptions is not obvious
in particular when trying to solve the global balance between \
external energy injection and bulk dissipation due to inelastic \ \

collisions among particles. It must also be noted that the
general validity of a hydrodynamic description is still the

subject of debate in the case of granular gases far from the F|G. 1. A sketch of the first model where the granular assembly
F'a]s)tic limit (a review of hydrodynamic problems is found in s driven by gravity plus aperiodically or stochastjcvibrating
15]). wall.

In Sec. I, we present the two versions of the model. In
Sec. lll and IV, we illustrate the results. In Sec. V, we dis-vided by a heat bath: in the present paper the energy feeding
cuss the hydrodynamics of the model in its first version, andnechanism is of two types according to the two numerical
finally we draw conclusions. For the sake of completenesgxperiments we perform.
and in order to make the paper self-contained, we included in (i) In model A, illustrated in Fig. 1 and inspired by a
Appendk A a brief description of the direct simulation recent laboratory experimefl] and a numerical experiment
Monte Carlo of the Boltzmann equation, and in Appendix B[16], the “apparatus” consists of a plane of dimensibp
we include the expressions of the dimensionless coefficients L, inclined by an angled with respect to the horizontal.

appearing in the hydrodynamic equations of Sec. V. The particles are constrained to move in such a plane under
the action of an effective gravitational forog.=g siné
Il. THE MODELS pointing downward. In the horizontal direction, there are pe-

riodic boundary conditions. Vertically the particles are con-

We introduce two bidimensional models both consistingfined by walls, both inelastic with a restitution coefficieqt
of N identical smooth disks of diameter and massn=1  (the difference between restitution coefficients for particle-
subject to binary instantaneous inelastic collisions that conparticle interactions and particle-wall interactions will be dis-

serve the total momentum cussed beloyv Besides, the bottom wall vibrates and there-
L fore injects energy and momentum into the system. The
Vit Vo=Vt (1) vibration can have either a periodic charad@s in[9]) or a

stochastic behavior with thermal propertigs in[16]). In
and reduce the normal component of the relative velocity the periodic case, the wall oscillates vertically with the law
Y.=A, sin(w,t) and the particles collide with it as with a
(Vi—Vvh)-n=—r[(v;—V,)-n], (2)  body of infinite mass, so that the vertical component of their
velocity after the collision iSv)’,= —rywoyt(1+ry)Vy,
wherer is the normal restitution coefficientr €1 in the whereV,,=A,w,, cos,t) is the velocity of the vibrating
completely elastic cagandn= (X, —X,)/o is the unit vector ~Wall. In the stochastic case, we assume that the vibration
along the line of centers; andx, of the colliding disks at amplitude is negligible and that the particles colliding with

contact. With these rules satisfied, the postcollisional velocith® wall have, after the collision, new random velocity com-
ties are ponentw, e (—,+ ) andv, € (0,+ ) with the following
probability distributions:

vi=v1—¥[(v1—v2)-ﬁ]ﬁ, P(o.) Uyex;{ vi) @
R et L
, 1+r ~n
V2:V2+T[(V1_V2)'n]n- (©)) P(o.)= 1 exd — vi) )
O 2T, T\ 2T

In addition, the particles experience the external gravitational

field and the presence of confining walls. With respect to (ii) In model B, sketched in Fig. 2 the “setup” is a two-
previous workg4], the energy necessary to prevent the cool-dimensional channel of depth, and of lengthL, , vertically
ing of the system due to the inelastic collisions is not pro-confined by a bottom and a top inelastic wall, with periodic

011301-2



DRIVEN GRANULAR GASES WITH GRAVITY PHYSICAL REVIEW E64 011301

60 LI T T T T T T T T T T
T_=50 =:
— T,=250 v Tu=250 *
sol ---- T,=50 |
40 - —

e I s I
o ,
0 10 20 30 40 50 60 0 10 20 30 40 50 O 10 20 30 40 50

n x/ty
FIG. 2. A sketch of the second model where the only energy
source is gravity, with components in both directions. FIG. 3. Snapshots of the model A with stochastic wall at tem-
peratureT,,= 50 andT,,= 250. The leftmost inset displays the time-
boundary conditions in the direction parallel to the flow. Theaveraged number density profile for both cases. Values of other
channel is tilted up by an angl¢ with respect to the hori- parameters arbl=500, N,,~56, r=0.7, r,,=0.7, andge= — 1.
zontal so that gravity has both componegis=g sin¢ and
gy=gcos¢. This model mimics the experiment performed tangential forces. Nevertheless, as a partial check, we try a
by Azanzaet al. [10], where a stationary flow in a two- modified version of model B where the tangential forces may
dimensional inclined channel was observed at a point fagffect the postcollisional velocities of the particles. As re-
from the source of the granular material. The assumption oforted below, the introduction of such forces does not
periodic boundary conditions in the direction of the flow is change the behavior of the measured quantities.
consistent with the observed stationarity, due to the balance
between the gravity drift and the damping effect of inelastic
collisions (for a discussion of the possible regimes that can
be shown by one particle in the presence of this balance, see Simulations of the first model, an inclined plane with a
[18]). bottom wall injecting energy, have been performed for dif-
The chosen collision rule excludes the presence of tangerierent choices of the number of diskk the normal restitu-
tial forces, and hence the rotational degrees of freedom dion coefficientr, the dimensionless width of the plamg,
not contribute to the description of the dynamics. =L,/rg, and the parameter measuring the rate of energy
Under the assumption afolecular chaosstating that injection from the wall, that is, the temperatufe, in the
P,(X, X+ aN,Vy,V,,t) = P(X,v1,t)P(X+0oNn,v,,t), whereP,  stochastic case and the amplitude and frequeigy w,, in
andP are the probability density functions for two particles the periodic case.
and one particle, respectively, it is possible to write down the Let us show how numerical simulations with the molecu-
Boltzmann equatiohEg. (9) in Sec. V], which can be solved lar chaos assumption reproduce the main results obtained in
by means of Monte Carlo methods. Here we used a simpliexperiment§9,10] and in high-performance computer simu-
fied (but still efficiend version of the direct simulation Monte lations[16] of inelastic hard disks.
Carlo scheme proposed by Bifd7]. With respect to the Snapshots of the systems and time-averaged density pro-
original version of the algorithm, the clock that determinesfiles are shown in Fig. 3 for the case of a randomly vibrated
the collision rate is replaced by ampriori fixed collision  wall. We are in the presence of a highly fluidized phase of
rate via a constant collision probability, given to every the type Isobe and Nakanisfil6] call granular turbulent:
disk at every time stept of the simulation, in such a way looking at the time evolution of the density distribution of
that the single-particle collision rate js~p./At. The col- the system and of the coarse-grained velocity field, one ob-
liding particle then seeks its collision partner among theserves an intermittency-like behavior with rapid and strong
other particles in a neighborhood of radiug, choosing it  fluctuations of the density in the form of sudden explosions
randomly with a probability proportional to their relative ve- followed by large clusters of particles traveling downward,
locities. Moreover, in this approximation the diameteis  coherently, under the action of gravity. Of course, more
no longer explicitly relevant but it is directly related to the dense and ordered phad#isat one can expect at lower val-
choices ofp, andrg in a nontrivial way: in fact, the Bird ues of energy injectionare not reproducible with the direct
algorithm allows the particles to pass through each other, sgimulation Monte Carlo, as strong excluded volume effects
that a precise diameter cannot be defined and estimated aggpear and the assumption of negligible short-range correla-
function ofp. andrg . The Bird scheme is described in more tions fails.
detail in Appendix A. In Figs. 4 and 5, we display the horizontal velocity distri-
The agreement between our simulations and the inspiringutions for the stochastic case. In Fig. 4, distributions for
experiments justifies the simplifying assumptions consideredifferentT,, are shown: the data collapse is obtained by res-
for our model, i.e., assuming molecular chaos and neglectingaling the velocities bw/T,. Instead, in Fig. 5 we show the

Ill. DISCUSSION OF THE RESULTS: MODEL A
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FIG. 4. Distribution of rescaled horizontal velocitieté\/T_W for 10°* 10 n 10" 10"
the model A with stochastic wall at different temperaturgs
=50, T,,=100, andT,=250. The other parameters ave=5000, FIG. 6. Granular(dimensionlesstemperaturel/(gerg) versus
N,,~180,r=0.7,r,=0.7, andg.= — 1. dimensionless heighy/rg (above and versus number density

(bottom) for the model A with stochastic wall, withi=5000, N,,
~180,r=0.7,r,=0.7, andg.= — 1. The solid line is a power-law

velocity distributions of particles contained in stripes at dif- fit for T(n).

ferent heights from the wall, again rescaled $§(y) (their
own variancein order to obtain the data collapse. It appears . o . . o
that the distributions are non-Gaussian and their broadening2ussian distribution is obtained, while a distribution close
[that is the granular temperatuféy)] is density-dependent. (© & Gaussian appears whgg= —100. This trend towards a
This dependence is shown in Fig. 6 as well as its dependen(%auss'a”! as the.angle of mcllnatlpn is raised up, reproduces
upon the height. An analogous dependence has been shofiactly the experlmentgl o_bse_rvatlon of Kudrolli and_Henry
in Ref.[4], where the granular gas was driven by a homogel9] (Where the angle of inclination of the plane was raised up
neous heat bath, showing a power law-n—# with g8 from 6=0.1° to 6=10°) and can be explained as an effect
~0.8, while in this case it seem@~0.88. of the increase of the collision rate with the wall, which
The case of a periodically vibrated wall is illustrated in “randomizes” the velocities in a more efficient way: this
Figs. 7 and 8. One can see the density profilegether with  resembles the heath bath mo¢4], where one passes from
a snapshot of the systerand the distribution of horizontal the non-Gaussian regime to the Gaussian one increasing the
velocities in two different regimes: foge=—1, a non- ratio between the heating rate and the collision rate.
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FIG. 5. Distribution of horizontal velocities, for the model A
with stochastic wall, measured on stripes at different heights and
rescaled by the average temperature at that height. The inset shows FIG. 7. Snapshot of the model A with periodically vibrating
the normalized number density profile with the position of the cho-wall (right) and time-averaged density profileft) for the follow-
sen stripesN=5000, N,,~180, r=0.7, r,,=0.7, ge=—1, and ing choice of parametersy=500, N,~56, r=0.5, r,,=0.7, g,
T,=100. =-1, f,,=400m, andA,,=0.1.
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FIG. 8. Distributions of horizontal velocities for the model A FIG. 9. Cumulated correlation functid®(R), as defined in the
with periodically vibrating wall for two different values of inclina- text, measured along stripes at different heights for the model A,
tion, that is,ge= — 1 andge= — 100, while the other parameters are with periodically vibrating wall. In the inset is displayed the num-
fixed: N=500, N,~56, r=0.5,r,,=0.7, f,,=400m, andA,=0.1.  per density profile, with the position of the chosen stripes. Hére

=500, N,,~56, r=0.5, r,,=0.7, f,=4007, A,=0.1, andg,=

In order to characterize the spatial clustering, we have-1.
studied the cumulated particle-particle correlation function,

ing their heights, that is, they may belong to regions of dif-

c (t,R) = 1 ferent densities. In such a way, the slow decaying tails, ex-
BOL AT Ng(y,ay)(NB(y,ay)—1) pected for the clusterized distributions of the stripes at lower
densities, are partially hidden by the Poissonihomoge-
X > A (R—|x(H)—x(t))), neous distribution of the stripes at higher density. Moreover,
i#j:x; ] €B(y,Ay) even from the global density distribution measured in their

6) work, a tail decaying slower than a Poissonian cannot be
clearly ruled out.

whereB(y,Ay) is a horizontal stripe contained betwegn
+Ay/2 andy— Ay/2. After having checked that the system
has reached a stationary regime, we have computed the time
average of the correlation function, that is, Let us now show the results for the second model, the
inclined bidimensional channel.

In Figs. 10 and 11, the hydrodynamic fieldgy) (number

IV. DISCUSSION OF THE RESULTS: MODEL B

1 T
CB(y,Ay)(R):_T_tOftodt Cgy.ay(t,R), (7)

which is independent of time F>t,. In Fig. 9, we show the *,
C(R) vs R for different stripesB(y,Ay). We observe a "y
power-law behavior 10¢ 1T ] e

,4,
e

Cp(y,ay)(R)~R%W). 8 ] 1| At R

In the case of homogeneous densdy,is expected to be > y f :
the topological dimension of the stripe, that i5,=1 if R 5F%, 1 r o1 o
>Ay andd,=2 if R<Ay. ‘

Clustering, whose signature is a value of the correlation A | & | %
dimensiond, lower than the topological dimension, appears ., t
in the stripes with not too high densities, where an exponent "4 - H
smaller than 1 is measuréthe fit is performed in the region o1 0r “TUs5 s Es 0 o5 1
R>Ay). The evidence of clustering is at odds with the ob- n v gy Thgry)
servation of Kudrolli and HenrjQ]: They report, in fact, the * xR
absence of clustering by measuring the distribution of the F|G. 10. Normalized number density dimensionless horizon-
number of particles in boxes of fixed dimensions spread alfal velocity v,/\g,rg, and dimensionless granular temperature
over the inclined plane. This observation is perhaps due tq/,/g,rg versus dimensionless heigtr ; for the two-dimensional
the fact that in the statistical analysis employed in R8f,  inclined channel(model B: N=500, N,,~56, g,=1, g,=—2
the number of particles in each box is considered disregardi.e., the inclination angleb= 7/6), r=0.95, andr,,=0.95.
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FIG. 12. Cooling rate, as defined in the text, versus dimension-
less heighty/rg for the two-dimensional inclined channghodel
B): N=500, N,~56, g,=1, g,=—2 (i.e., the inclination angle
¢=ml6),r=0.95,r,=0.95, orr,=0.4.

FIG. 11. Normalized number density dimensionless horizon-
tal velocity v,/\g, g and dimensionless granular temperature
T/\Jg,rg versus dimensionless heigtr  for the two-dimensional
inclined channe{model h: N=500,N,,~56,9,=1, g,=—2 (i.e.,

the inclination anglep= =/6), r=0.95, andr,,=0.4. . . .
glep=/6) v rv (see Fig. 10 we obtain a better agreement with the ex-

perimental profiles. In particular, both temperature and ve-

and T(y) (granu|ar tempera’[u)‘are shown as functions of |0C|ty prOﬁles seems to go t'O Z.ero near the bottom, although
the distance from the bottom wafl The velocity, the tem- We cannot really rule out slipping effedts,(y=0)#0].
perature, and the height are made dimensionless by rescaling e have also studied the distribution of horizontal veloci-
them by \guIs, O,fs, andrg, respectively. The profiles ties in stripes at different heightsere the mean values are
reproduce well those measured experimentally by AzanzBeight-dependentThese are displayed in Fig. 13, showing
et al. [10]: they show a critical heightl of about six times the emergence of a non-Gaussian behavior mainly in the case
the radiusrg, which corresponds to the separation betweerWith ry,<r and only in the stripes near the bottom wall. The
two different regimes of the cooling rate. In a mean-field@uthors of the experiment of RefL0] claim that the distri-
framework, the local rate of dissipation due to the inelastic?utions of velocity are very close to the Gaussian and try to
collisions (as already stated beforis ¢o<n T2 fit their data with the rheological model proposed by Jenkins
This can be understood by simply noting that the collision@"d Richmari19], which postulate a quasi-Gaussian equilib-
rate is proportional to the local density and to the local relafium to calculate the transport coefficients. Near the bottom

tive velocity of the particles {T), while the change in the

density, v,(y) (velocity component parallel to the flow

granular temperature induced by every collision is propor- 10— T T 11

tional to the temperaturé. The quantity =nT%? as a func- af 11;].1 T

tion of y is shown in Fig. 12. The cooling rate decreases 0 | =|  “des

exponentially and is reduced under 1/100 of its maximum g 102F W

value at about the observed critical height6r g, account- L ¥/

ing for the difference between a collisional regime and a 10°

ballistic one. roL
With respect to the velocity and temperature profiles in ;8 -6 -4

Fig. 10, we note here that quite unphysical features appear. 10 ' '

In particular, the quite strong slipping effect near the bottom 10 F 10" [T

wall is in contrast with the experimental findings. We think = »2-"10'2 de}"‘-v.___

that this is due to incorrect modeling of the particle-wall & 107[ ° -

collision events. o°k M
The restitution coefficient used in our model has to be |

considered as an effective parameter describing the energet 4  —

ics of collisions. It should depend on the details of the colli-
sion event, in principle even on the relative velocities of the

colliding particles. In the experiment, the bottom wall was k|G, 13. Distribution of horizontal velocities for the model B,

covered with particles identical to the flowing ones with ameasured on stripes at different heights and rescaled in order to

spacing bounded between 0 and 0.8 mm. However, the papave the same mean and variance. The inset shows the normalized

ticles are stuck to the bottom wall so that the collision eventumber density profile with the position of the chosen stripés.

is completely different from a two-particle collision. =500, N,,~56, r=0.95,r,=0.95, g,=1, andg,= -2 (i.e., the
Using a lower effective restitution coefficient for the wall inclination angle¢= =/6).

(V-VINT(y)
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FIG. 15. Normalized number density dimensionless horizon-
FIG. 14. Cumulated correlation functi@®(R), as defined in the &l velocity v,/Vg,rg, and dimensionless granular temperature
text, measured along stripes at different heights for the model B. I/ (9x's) versus dimensionless heigtr g for the two-dimensional
the inset is displayed the normalized number density profile withnclined channeI: Here tangential restitution coefficients smaller
the position of the chosen stripes. HeN=500, N,~56, r  than 1 are consideretsee text N=500, erf56' 9x=t1v 9
=0.95,r,,=0.95, g,=1, andg,=—2 (i.e., the inclination angle ~2 (i-€., thte inclination angle¢=/6), r"=0.95, r'=0, r
#=m6). The dashed lines represent the power-law fits, the verticaf 0-95, andr,,=0.
dot-dashed line represents the width of the strifygs ) ) ) )
simulations with several choices of the enlarged set of pa-
wall, the Gaussian approximation is far from obvious, asf@ameters do not show qualitative differences: setting tangen-
shown by the results of our simulations: this is an effect oftial restitution coefficients lower than 1 is equivalent to en-
the inelasticity of the collisions but also of the proximity of hancing the dissipation in the original model.
the boundary. As an example of this, we show Fig. 15, where the ex-
Finally, we have investigated the homogeneity of the deniremal case of a vanishing tangential restitution coefficient is
sity: the Fig. 14 shows the previously defined functionreported. Note that the profiles are similar to those shown in
Cay.ay)(R) for stripes at different density. There appearsFig- 11, where a low,,=0.4 was used.
again a clustering effect, with a correlation dimension rang-

ing from 1 (homogeneous stripeso 0.2 (highly clusterized V. DISCUSSION OF THE HYDRODYNAMICS: RESULTS

stripes. In the figure, we show the very small distance re- AND PROBLEMS
gion,R<rg, where homogeneity should be recovered. Since . . )
in our simulationAy~r g, we expect(y) =2 in this region. The Boltzmann equation for the two models introduced in

We consider the comparison between our simplifiegthis Paperin two dimensionsreads
model and the experimental profiles quite satisfactory: this P P
seems to suggest that introducing further physical details 7. 7 _
should be irrelevant at this description level. However, we (&t v V+g|§vi)f(x,v,t) (D, ©
briefly report the results obtained with a slightly modified
version of the model, including the effects of tangential A A -
forces. Such forces play a key role in dense granular flows J(f’f):Uf dVlf dn@®(n-v,)(n-vy)
[3,20], being responsible for arching. On the other hand, the
present results suggest that in the case of diluted systems X[r2f (v D F (v, 1) = GV, D F (X, v, )]
they act similarly to the normal forces without introducing (10)
noticeable effects.
The introduction of tangential forces in the model studied

. Heren is the unit vector along the line joining the centers
accounts for a new collision rule: 9 J 9

of the colliding particles at contact, =v—v; is the relative
velocity of the colliding disks® is the Heaviside step func-
tion, andv’ andv; are the precollisional velocities leading
D r - after collision to velocitiess, v;.

(v1=V) - t=—r(vi= Vo) ], Equation(9) must be completed with the boundary con-

. N - . .ditions in order to describe the microscopic evolution of the
where we replace the single restitution coefficient with a pair,

n N . whole system.
of parameters a”‘?' = re_s_pectlverA, .due to_ the effect of The difficulty of solving the Boltzmann equatigf) can
normal and tangential collision forcet i6 a unit vector per-

A be bypassed by substituting the microscopic description
pendicular ton). Analogously, the restitution coefficienj,  given byf(x,v,t) with the averaged macroscopic description
splits into two new parametens, and r},. The results of given by the following hydrodynamic fields: the number

(Vi—Vy)-n=—r"[(v;—V,)-n],
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density fieldn(x,t), the velocity fieldv(x,t), and the granu-
lar temperature field'(x,t). These quantities are given by

n(x,t)=f dv f(x,v,t), (11
u(x,t)= nex. t)f dv vf(x,v,t), (12
_ 2
kBT(x,t)=n(it)f dvm[v l;(x’t)] f(x,v,t). (13

Multiplying the Boltzmann equatior{9) by 1 or v or
m[v—u(x,t)]%/2 and integrating over,;, one can derive
[24,25 the equations of fluid dynamics:

n
Dt+nau, 0, (14
Dui .
MmN ==d;7;+ngm (i=1,2,3), (15
DksT
nD—t:_aiqi_Tijﬁjui_gnkBT, (16)

where d,= d/9x; (for the sake of compactness, we use here

the notatiorx—x; andy—x,) andD/Dt=4/dt+u-V is the
Lagrangian derivative, e.g. DUDt)F(x,t)
=(d/dt)F(d(xg,t),t) with ¢(Xq,t) the evolution after a
time t of X, under the velocity fieldu. In the above equa-
tions,

Tik:f dvm(v;—uj)(v—u f(x,v,t) (17

is the stress tensag,is the volume external forc@gravity in
our case

m 2
gi= dvai|v—u| f(x,v,t) (18
is the heat flux vector, and
B (1—|’2)7Tl/20'fd fd
{(X,t) 8F(5/2)nkBT Vl V2|V1 V2|
Xf(xvvlat)f(X1V21t) (19)

is the cooling rate due to dissipative collisions.
The set of equation&l4)—(16) becomes closed hydrody-
namic equations for the fields u, andT whenP;; , g, and{

are expressed as functionals of these fields. This is obtaine
for example, expressing the space and time dependence of

in terms of the hydrodynamic fields and then expanditm
first order(the so-called Navier-Stokes orglén their gradi-

ents, with the exception af, which requires an expression of
f to the second order of gradients to be consistent with the

PHYSICAL REVIEW E64 011301

other terms. With this approximation, Eq44)—(16) include
the contributions up to the second order in the gradients of
the fields.

Calculations of the closure of the hydrodynamic equations
for granular media have been performed with some approxi-
mations restricting the validity of the results to the low dis-
sipation or quasielastic limif19]. More recently[21], the
analysis has been extended to arbitrary inelasticity giving
closed expressions for the momentum and heat fluxes and for
the cooling rate’.

We follow these more recent resu[l] and write down
the hydrodynamics for the model A presented in this paper
[gravity in one direction and vibrating bottom wall, i.gj,
=(0,9,) and g.<0] with the following assumptions: the
fields do not depend upox (the coordinate parallel to the
bottom wal), i.e., 9/9x=0, and the system is in a steady
state, i.e.d/dt=0. The continuity equatio14) then reads
aldy(n(y)uy(y))=0 and this can be compatible with the
bottom and top wallswhere nv,=0) only if n(y)v,(y)
=0, that is, in the absence of macroscopic vertical flow. The

equations are written for the dimensionless fieldskgT/
(—gema) andn=ng?, while the positiory is made dimen-
sionless usingy=y/o. Finally, for the pressure we set

p(y)=mo=n(y)kgT(y). With the assumption discussed
above, the equations of Brest al. [21] read

d o~~~ ~ -~
—=[n(y)T(y)]=—n(y), (20)
dy

1 d
—Q,(y)+C(rn(y)T(y)®?=0,

= ) & (21

whereQ,(y) is the granular heat flux expressed by

V)32

Qi(y)= A(Ir)T(Y)”2

T<y>+B<r> —n(y).
dy dy

(22

In the above equationg\(r), B(r), andC(r) are dimen-
sionless monotone coefficients, all with the same sign, ex-
plicitly given in Appendix B. In particularB(1)=0 and
C(1)=0, i.e., in the elastic limit there is no dissipation and
the heat transport is due only to the temperature gradients,

while whenr<1, a term dependent upord/dy)In(n(y))

appears irQ,(y). The use of dimensionless fields eliminates
the explicitg dependence from the equations, which remains
hidden in their structuré¢the right-hand term of Eq(20),
which is due to the gravitational pressure gradient, disap-
Hears in the equation fag=0].

' A change of coordinate can be applied to E@0) and
21) in order to obtain a simpler form:

V—1(3)= foyﬁw')dy’. 23)
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FIG. 16. Plot ofH, defined in Sec. V, versusfor three different
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a(r)s d?_ a(f)s (d. |2 B(r) d.
Tods 2?(s)3’2(d_ST(S)) “Fepeds
+sT(s)Y2=0, (29
where «(r)=[A(r)—B(r)]/C(r) and pB(r)=[A(r)

—2B(r)]/[C(r)] are numerically checked to be positive
(see Appendix B for values ofr not too low (aboutr
>0.3) and are divergent in the limit-1.

Equation(29) become a linear equation i(s) as soon as

the change of variable(s)=T(s)*? is performed:

2

2a(r)sd—z(s)—2,8(r)disz(s)Jrsz(s):O,

02 (30)

simulations of the model A: two cases are with the stochastic wall

(N=5000,N,,~180,r=0.7,r,=0.7, g.= — 1, T,,= 150, andT,,
=250), while the third case is with the periodic wal £ 5000,
N,~180,r=0.7,r,=0.7, ge= — 1, f,,=80m, andA,,=0.1).

It follows that wheny spans the ranged.L, ], the coordi-
natel spans the rangl,o/L,]. With this change of coordi-
nate it happens that

@—;ﬁﬂ)a (24)
and the first Eq(20) reads
d - -
GinOTMI=-1, (25
from which we immediately to see that
H=n()T(I)+] (26)

is a constant, i.e.d/dl)H=0. This is equivalent to observe-
ing that

y
P(y)—gf0 n(y’")dy’ (27)

is constant, which is merely the Bernoulli theorem for a fluid

giving the solution

2(8)=As*" 3, (B’ (19)+Bs* N,y (B'(r)s),

whereJ,, andN,, are the Bessel functions of the first and
second kind, respectively’ (r)=[a(r)+B(r)]/[2a(r)] is
real and positive, an@’ (r)={1[2a«(r)]}*? is real and is
considered in its positive determination. Moreover, they
present the elastic valueg' (1)=1 andB’'(r—1)=0 (see
appendix B, while A and B are constants that must be de-
termined by assigning the boundary conditions.

Then we can derive the expressions Tdt) andn(l):

T(H=(H=DH2"O[AI, (B (N (H=1))

+BNy (n(B'(r)(H=1)7?, (32
_ (H_I)l—Za'(r)
n(l)= .
[Adr(ry(B' (1) (H=1))+ BNy (B' (1) (H=1))]?
(33

To calculate the expressions ofandn as a function of
the original coordinatg, one needs to solve the equation

d-
ay“)

1

= (34)

in the gravitational field with the density depending upon the

height.
Relation (26) is verified by the model simulated in this

work in the Fig. 16 for almost all the height of the container,

putting in it the solution(33). However, one can obtain a
comparison with the numerical simulations using the new
coordinatd. The main problem, at this point, is a discussion

apart from the boundary layer near the bottom driving wall.of the boundary conditions needed to eliminate the constants

Using the coordinatd introduced in Eq.(23) and the
elimination ofn(l) using the recognized constant, that is,

_ A
T

n(l) (28)

the second Eq(21), after some simplifications, and after a
second change of coordindte>s(l)=H—1, becomes

H, A, andB.

One could impose that(l ,,5,)0=0 atl ,,,=o/L. From this
condition it immediately follows thaH=o/L,. A second
condition can be obtained imposing a vanishing derivative of
the temperature dt,,y, that is,

(39
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The third condition is the most delicate: it must contain 1.0p

the rate of energy injection coming from the vibrating wall. 05k ALY
This rate depends upon the paramelgr (or A,, and w,,) = _g'g A N
and upon the particles flux impinging on the wall 10—
=n,L,v ., wheren, is the number density of particle ap- .20 , : , | ,
proaching the wall an@, is their velocity averaged near 103F. 3
the wall. The first may be simply estimated ras=n(0)/2. = 10tE 3
Moreover, if the velocity of the macroscopic flow is zero, the 10i:— ...... e P , . ]
average velocity of the impinging particles is due only to 1070 50 100
fluctuations ofu, that is, v~ kgT(0)/m. In a collision 10°E e L oreeererieesrtemermsadeemamesnonereed
with the wall, the average energy gain is given by = 10°F faerem r

m m 10, . 3
AB,= 5 (VE=IV2) = S (002+ (0))? = (0,07~ (0,)7], 10° s 1

(36) yitg
which is different for the stochastic or the periodic case, F!G- 17. Profiles of dimensionless hydrodynamic fiefdsv,,
respectively: andT versus the dimensionless heighitg, for the model A with
the stochastic wall at temperatufig,=250. N=5000, N,,~ 180,
3kgTy r=0.7, r,=0.7, andg.= —1. The dashed vertical line marks the
AEs= — ksT(0), (37)  same height of Fig. 18.
m(1+r,)2A2w2 (1-12)kgT(0) Apart from the difficulty of solving the boundary condi-
Ewp= Z - > (38)  tions to give an expression & and B as functions of the

parameters of the model, one must observe that the hydrody-
obtained straightforwardly from E¢36) assuming no corre- namic description given here is ill-posed from the beginning
lations between the velocity of the wall and that of the ap-for what concerns a broad boundary layer near the bottom
proaching particles. wall. A simple look at the profiles of uy(y)
Then a nonclosed expression for the rate of energy injec= uy(y)/\/TerB and ?(V):Ty/(—gerB) (the overlined
tion coming from the wall reads quantitiesn, u, T, andy are analogs of the dimensionless
kaT(0) variablesn, u, T, andy with the assumptiom=1, kg=1,

W,,=AE,«®=3kgT,L,n(0) ando=rg) in Fig. 17 can give the idea. We expect from the

m continuity equation(14), as discussed abova,(y)=0 for
L n(0)[keT(0)]32 everyy, while a broad region appears with a nonconstant and
B B , (39 nonmonotonic behavior. Moreover, even the profileT¢y)
2m shows an extremal point, in this case a minimum. But from

Eq. (22), taking into account the substitutid@8), it can be

seen that the impositiord(dy)T=0 gives the following re-
8 X m lation:

m(1+r,)?A20? kgT(O
Wiyp=AE ;@ = — " L,n(0) \/— ©

(1-r3) [keT(0)]%2
2 LXH(O)T

The above expressions are useful to establish the third
needed boundary conditions. In order to do that, they must . ) )
be compared with the energy dissipation rate due to inelasti¥nere the fractiol€/(B—A) = — 1/« is numerically checked
collisions. The local dissipation rate is given by to be negative from a value oﬂower than 0.4see appendix
{(Y)kgT(y)=C(r)on(y)[ksT(y)]¥¥Jm (see Appendix B). Relation(42) states that iff>0, a minimum[that is, a
B). The instantaneous balance between energy injection amubsitive value of ¢%/dI?)T] cannot be expected. Similar

(40) ~ d2_ c(r) -
12 _ 312
T =g a0 @2

dissipation in collisions then reads profiles for T(y), with a minimum, have been obtained in
other simulation$22].
We 1 JLdeJLydygk T(y) A tentative fit is presented in Fig. 18. Here we used three
LiLyJo 0 B boundary conditions obtained directly from the simulations:
a value ofnT at a certain heighy, to obtain directlyH, the
_(—09)3/2mC(f) olbx = e value of T, and the value of its derivative at heights and
- L J di ™, (41) y3, respectively, with ally,,y,,y3 not far from the top wall
y 0 3 ’ 1:¥2+Y3 .
In this tentative fit, the problems discussed above appear
whereW is W, or Wi, clearly: there is a broad region near the bottom \sgle also
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not vibrate, therefore resembling a stationary flow along a
bidimensional channel. In both versions of the model, we
have found good agreement with the analogous experiments
[9,10]. In particular, the model with the vibrating wall shows

. strong non-Gaussian behavior of the velocities, which turns
to a Gaussian behavior if the angle of inclination is raised up
| (this should be an effect of the increase of the heating rate, as
10° the particles are more frequently in contact with the vibrating
wall). The same model also presents evidence of different
degrees of clusterization at different heights, and this is in
contrast with the experimental observati@]. The model
with gravity in both directions and without a vibrating wall
shows a stationary flow in the horizontal direction, where
N . . . . there are periodic boundary conditions: the profiles of the
102 102 107 10° number densityi(y), thex component of the velocity,(y),

1, and the granular temperatuli€y) as functions of the dis-
tance from the bottorg are in very good agreement with the
experimental profiles, showing a linear behavior in a broad
region near the bottom that corresponds to the region where
the collisions dominate the dynamics. This version of the
model also shows strong evidence of density-dependent clus-
Yerization and a non-Gaussian behavior near the bottom wall.
The simplicity of the first setup has allowed us to solve ex-

' actly the hydrodynamics equations fofy) and T(y) fol-
lowing the formulation of Breyet al.[21]; however, it is not
Fig. 17) where the theoretical solution of Eq&0) and (21) possible to obtain a matching conditic_)n between the bulk of
is qualitatively different from the simulation data. the granular _as_ser_nbly and the vibrating wall that IS respon-
sible for the injection of energy. It seems to be an intrinsic

_The qualitative inconsistencies between the observed prag o o, of the high-density gradients observed near the bot-
files and the hydrodynamics in a broad boundary layer near

oo g d “tom wall that the Navier-Stokes approximation fails to de-
the vibrating wall are probably due to the high-density gra scribe. This suggests the need for a better description of the

dients present in this region. The high-density gradients re : : : i .
resent a numerical but also a conceptual problem: it is nSpoundary layer, which should include higher-order density

. . At ' and temperature gradients and also, at the level of kinetics,

merical because the profiles shown in Fig. 17 are obtained b%e non-Gaussian velocit . )
L . . y statistics and the effect of spatial

means of a coarse graining in horizontal stripég,Ay) and correlations(clustering

so they can be compared to the theoretical profiles only if the '

density in these stripes is approximately homogeneous; it is

conceptual because this hydrodynamic description is based ACKNOWLEDGMENTS

upon the Navier-Stokes approximation, which is an expan-

gr%r;rc?‘nft(hxév,t) .f(vln(x,t),u('x,t),T(x,t)) Up to the first Loreto for useful discussions. This work was supported by

gradients of the fielasu,T.
It must be stressed that this boundary-layer problem af'Ehe INFM through a PAIS grant.

fects the description of the whole system in a strong way, as

its global behavior(for example, the scaling laws for the APPENDIX A: BIRD'S SCHEME EOR THE MONTE

global temperature or the center-of-mass height, extensivelyCARLO SOLUTION OF THE BOLTZMANN EQUATION

investigated if11-14) emerges from the balance between ) ) ) )

the bulk dissipation and the injection rate, which cannot be Bird’s scheme, often called direct simulation Monte Carlo

determined, even qualitatively, by a hydrodynamic study afPSMC), was designed in the 1960%7] and its derivation

FIG. 18. Profiles of dimensionless hydrodynamic figldand T
versus 1/l (the new coordinaté is defined in Sec. V and
I ma= alL~rglL,) for the model A with the stochastic wall at tem-
peratureT,,=250. N=5000, N,,~180,r=0.7, r,,=0.7, andg.=
—1. The solid lines are the theoretical fit using the hydrodynamic
model of Breyet al. The vertical dashed line marks the heighiso
appearing in Fig. 17 whereT presents a minimum and, therefore
goes to O.

We wish to thank J. Brey, M. J. Ruiz Montero, and V.

the level proposed in this paper. was a priori independent of the Boltzmann equation. Re-
cently, its convergence to solutions of the Boltzmann equa-
VI. CONCLUSIONS tion in a suitable limit has been provg#i3], reinterpreting it

as a measure-valued stochastic process.

We have studied, by means of a direct simulation Monte Bird's scheme can be formulated as a fixed time)(step
Carlo algorithm, a model of granular flow in two different “molecular-dynamics-like” simulation. At each time step,
bidimensional setups: the first version consists of an inclinedhe dynamics is separated into two distinct processes: the
plane with a periodic horizontal boundary condition, a topindependent evolution of every particle and the collisions of
inelastic wall, and a vibrating bottom inelastic wall while near particles. The following algorithitior the single time
gravity acts in they direction perpendicular to the vibrating step is the one we implemented in this work, which is a
wall and pointing toward it; in the second version, gravity modification of the original scheme.
acts in both thex andy directions and the bottom wall does (i) Free flow Each particle evolves independently follow-
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ing the equations of motior=v,v=g with first-order dis-
cretization.

(ii) Collisions. Every particlé, during this time step, has
a probabilityp. of making a collision, so thgp./Ateco (in

fact, the collision cross section is proportional to the diam- 0.2 04 06 08 !
eter of the particles If the particle collides, then another ;2F ' ' ' ' ' ' ' '
particle x; ,v; is chosen with|x;—x;|<rg (we call rg the ok ,,j_
“Bird radius,” but it could also be thought of as the “Bolt- 10 //

zmann radius) with probability p;;=|v,|; for the pairi,j, 10'26 : 0[2 : 0!4 : 0!6 : 0'8 —

the postcollisional velocities are calculated as they were at in

contact with a random choice of the collision parame&er
this step is repeated for every particle.

It is important to stress the fact that this is above all a s m e e—————
Monte Carlo method to solve the Boltzmann equati@n In 02 05 0.6 0.7 0.8 0.9 1
this sense, microscopishort-rangg details are lost; thé\ r
particles themselves do not represéhteal grains of the

granular assembly but carry the space-time average informa- FIG. 19. Trans_port coefficients, B and dis§i_pative coefficient
tion of many more particles. C of hydrodynamics(Sec. V), numerical coefficientsx and 8 of

Eq. (30), and numerical coefficientd’ andB’ of the solution(31)
versus the restitution coefficient

APPENDIX B: THE NUMERICAL COEFFICIENTS IN THE
HYDRODYNAMIC EQUATIONS
Q C(r)=—42(0) 7o, (B9)

In Sec. V, the hydrodynamics of the first model is studied.
The equations with the transport coefficients calculated bynd
Brey et al.[21] are used. The coefficients needed in our case
are the two thermal conductivities and u appearing in the

expression of the heat flux, Koi, (B9)
N
g=—«kV(kgT)—uVn, (B1)
1
and the coefficient of the dissipative term, No=—"m—, (B10)
2\
—CkgT. (B2)
. _ ca(r)
In Ref.[21], the coefficients are given for the cade 3 £a(r)| ka(r)+ 250
(d is the dimension of the spaceNe have taken the coef- w1=2 : , (B11)
ficients ford=2 from an unpublishedto our knowledg va(r) =344(r)
work of Brey et al. [26], and we have put them in the fol-
lowing form: o 1+cy(r) 612
, Y440
(kgT)*?
—K:A(r)T, (B3)
om Li=3(1-r)[L+ Heu(n)], (B13)
kaT 3/2
—M=B(r)%, (B4) vi(N)=(1+1)[F = Fr+ 105(14=6r)c,(r)],
om¥n (B14)
on(kgT)Y2 (1-r)(1—2r?
—=C(r) ———, B5 cq4(r)=32 . B15
{=C(r) iR (B5) (1) 57— 25+ 302(1—1) (B15)
where The coefficientA(r), B(r), andC(r) are plotted in Fig.
19. In the same figure are also presented the coefficients
- a(r)=[A(r)=B(r)J/C(r) and B(r)=[A(r)—zB(r)]/
Ar) x1(M o, (B6) C(r) appearing in Eq.30) and, finally, the coefficients
a'(r)=[a(r)+B(r)1/[2a(r)] and B’(r)={1[2a(r)]}**
B(r)=—pu(r)xo, (B7) appearing in the solutio(81).
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